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We have recently described a new method for synthesizing
cyclopentenones via the rhodium-catalyzed cyclization of 4-alkynals
(eq 1; Scheme 1).1 With regard to asymmetric catalysis of this

transformation, for simple substrates, no stereocenter is generated
in the process. Nevertheless, one can envision that a chiral catalyst
could be applied to kinetic resolution (e.g., eq 2) and/or desym-
metrization (e.g., eq 3) reactions.2

The data illustrated in eq 4 provided the stimulus for our efforts
to pursue these possibilities. In early work, we had determined that
the use of a coordinating solvent such as acetone (eq 1) is usually
critical for obtaining a good yield of the desired cyclopentenone.
For example, for the methyl-substituted substrate (1a) depicted in
eq 4, the cyclization proceeds in only 31% yield when the reaction
is run in CH2Cl2,3 versus an 88% yield in acetone. We were
surprised, therefore, to discover that closely related methoxy-
substituted 4-alkynal1b cyclizes in CH2Cl2 in essentially quantita-
tive yield (eq 4).

In view of the well-known propensity of 12-electron [RhL2]+-
based catalysts to participate in hydroxy- and alkoxy-directed
reactions,4 perhaps most notably hydrogenation processes, we
postulated that the anomalously efficient cyclization of1b might
be attributable to coordination of the methoxy group to rhodium.
Because two-point (more generally, multi-point) complexation of
a substrate to a catalyst often provides a level of organization
conducive to high selectivity,4 we decided to attempt to capitalize
on this observation by developing an enantioselective cyclization.
Enantiopure 4-hydroxycyclopent-2-enones are of interest due to
their utility as intermediates in the synthesis of natural products
such as prostaglandins5 and pentenomycins.6,7

We are pleased to report that rhodium/(chiral bisphosphine)
catalysts can indeed achieve intramolecular hydroacylation reactions
of 4-alkynals with high levels of stereoselection. For example, Rh/
(i-Pr-DUPHOS) serves as an efficient catalyst for the kinetic
resolution8 of substrates in which theâ carbon is a tertiary
stereocenter (Table 1, entries 1-3).9 Selectivity factors (s ) [rate
of fast-reacting enantiomer]/[rate of slow-reacting enantiomer]) of
∼20-40 can be obtained, values that are sufficiently high to allow
the unreacted aldehyde or the cyclopentenone to be isolated in good
enantiomeric excess.10 If the â carbon is a quaternary stereocenter,11

then Tol-BINAP is the ligand of choice,12 providing very good
selectivity factors when theâ position bears a methyl group (s ≈
20; entries 4 and 5), although the presence of a bulky isopropyl
substituent leads to lower enantioselection (entry 6).

Our successful kinetic resolutions with Rh/(Tol-BINAP) of
4-alkynals in which theâ carbon is a quaternary stereocenter (Table
1, entries 4 and 5) suggested to us that we might also be able to
effect catalytic enantioselective desymmetrizations of prochiral
diynes. As illustrated in Table 2, this has proved to be possible.
Thus, Rh/(Tol-BINAP) catalyzes the cyclization of an array of
diynes to generate the desired cyclopentenones in excellent yield
and enantioselectivity.13* To whom correspondence should be addressed. E-mail: gcf@mit.edu.
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In conclusion, we have developed two new catalytic asymmetric
processes that provide efficient access to interesting chiral building

blocks, cyclopentenones that bear tertiary and quaternary stereo-
centers, in high enantiomeric excess. Future work will include
additional studies of the scope and mechanism of this and related
transformations.
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Table 1. Rhodium-Catalyzed Kinetic Resolution of 4-Alkynals

a Value for a specific run.b Average of two runs.c Carried out at 40
°C.

Table 2. Rhodium-Catalyzed Desymmetrization of 4-Alkynalsa

entry R yield (%)b ee (%)

1 n-C5H11 95 92
2 Cy 94 95
3 (CH2)3Cl 91 91
4 CH2OMe 93 82

a All data are the average of two runs.b Isolated yield.
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